370. The Apparent Polarities of a Number of Substituted Chloro-, Nitro-, Methyl-, Methoxy-, and Acetyl-benzenes.

By (MRS.) C. G. LE Fèvre and R. J. W. LE Fèvre.

The apparent dipole moments, in benzene at 25° (refractivity method), of some 19 substances are recorded. When the aromatic nucleus has three or more substituent groups the molecular polarities cannot be predicted accurately or explained generally by any one alone of a number of qualitative treatments, already described in, or indicated by, the literature.

The Barclay-Le Fèvre relation (J., 1950, 556) is found to provide, from data for benzene solutions, a satisfactory estimate of the moments, as measured in the gaseous state, of anisole and acetophenone.

KADESCH AND WELLER (J. Amer. Chem. Soc., 1941, 63, 1310) have reported the dipole moment of acetylmesitylene as 2.71 D. and attributed the difference between this figure and that found by them for acetophenone, viz., 2.88 D., to steric inhibition of mesomerism (cf. Birtles and Hampson, J., 1937, 10; Ingham and Hampson, J., 1939, 981). The purpose of the present communication is to put on record a number of determinations, of which that for acetylmesitylene was one, started at University College, London, during 1935—39, to compare the moments of various monosubstituted benzene derivatives with those of derivatives which, by crude vectorial arguments based on a regular hexagonal C_6 skeleton, should have had the same values. The work was originally suggested by suppositions (Le Fèvre and Le Fèvre, J., 1935, 957) which, after the appearance of Hampson's papers, seemed much less necessary. Our results may, however, have a residual usefulness. They are given in Table I below, together with figures for a few related substances. Benzene has been the solvent throughout.

	IA	BLE I.			
Compound.	${}_{(\text{c.c.})}^{\infty P_1}$	$[R_L]_{\mathbf{D}}.$	$- \overset{\infty}{[}^{P_1}_{R_L]_{\mathbb{D}}}.$	$\mu_{ ext{apparent}}$, D.	Source.
	(A) Anis	ole series.			
Anisole 3-Methyl-6-tertbutylanisole p-Nitroanisole 2:4:6-Trinitroanisole "Musk Ambrette"	67·4 96·0 515·0 134·6 315·3	33·0 * 56·6 † 39·6 ¹ 50·6 † 67·3 †	34·4 39·4 475·4 84·0 248·0	1.3_{0} 1.3_{9} 4.8_{2} 2.0_{3} 3.4_{0}	Present work.
	(P) Tolu			0 -8	,,
	Б) 101и	ene series.			
Toluene 2:4:6-Trichlorotoluene 2:4:6-Trinitrotoluene Mesitylene Trinitromesitylene Trinitromesitylene 5-tertButyl-m-xylene 2:4:6-Trinitro-5-tertbutyl-m-xylene	$\begin{array}{c} 33.5\\ 54.9\\ 87.2\\ 41.8\\ 329.4\\ 70.5\\ 56.5\\ 98.5 \end{array}$	$\begin{array}{c} 31 \cdot 1 * \\ 46 \cdot 1 + \\ 48 \cdot 7 + \\ 40 \cdot 6 * \\ 47 \cdot 0 * \\ 59 \cdot 2 \\ 55 \cdot 2 \\ 72 \cdot 2 \end{array}$	$2.4 \\ 8.8 \\ 38.5 \\ 1.2 \\ 282.4 \\ 11.3 \\ 1.3 \\ 26.3$	$\begin{array}{c} (0 \cdot 3_{4}) \\ 0 \cdot 6_{6} \\ 1 \cdot 3_{7} \\ (0 \cdot 2_{4}) \\ 3 \cdot 7_{1} \\ (0 \cdot 7_{4}) \\ (0 \cdot 2_{5}) \\ 1 \cdot 1_{3} \end{array}$	J., 1935, 480. Present work J., 1935, 957 J., 1935, 488 J., 1935, 957
(C)	Chlorob	enzene serie	s.		
Chlorobenzene	83.3	31.1 *	52·2	1.60	Trans. Faraday Soc.,
1 : 4-Dichlorobenzene 1 : 3 : 5-Trichlorobenzene 1-Chloro-2 : 4-dinitrobenzene Picryl chloride	$37.7 \\ 42.8_{5} \\ 258.2 \\ 74.8$	36·2 ² 40·9 ³ 43·0 † 48·8 †	$1.5 \\ 1.9_{5} \\ 215.2 \\ 26.0$	(0.27) (0.31) 3.2_4 1.1_3	J., 1936, 487 Present work
(\mathbf{D})	Acetophe	none series.			
Acetophenone 4-Methylacetophenone 2: 4: 6-Trimethylacetophenone 3: 5-Dinitro-2: 6-dimethyl-4- <i>iert</i> butyl- acetophenone	217·1 255·2 209·9 228·2	36·3 * 40·9 50·8 † 74·8	170·8 214·3 159·1 153·4	2.89 3.23 2.79 2.74	" " "
3-Nitro-4-methylacetophenone	298.9	46.8	152.1	2·7 ₂	,,
(E) Nitrobe	enzene serie.	s.		
Nitrobenzene	356 ·1	32.7 *	323·4	3.97	Trans. Faraday Soc., 1950, 46 , 1
1:3-Dinitrobenzene 1:3:5-Trinitrobenzene 2:5-Dichloronitrobenzene	$344.7 \\ 54.3 \\ 290.0$	$38.6 \\ 44.7 \\ 42.5(2)$	$306 \cdot 1 \\ 9 \cdot 6 \\ 247 \cdot 5$	3.86 (0.68) 3.48	Present work J., 1935, 957 Present work

* From Landolt-Bornstein-Roth, "Tabellen," 4th Edn., p. 1027. † Calc. from the preceding asterisked datum, by using the group refractivities listed by Vogel, J., 1948, 1842.

¹ Calc. from figures for anisole and nitrobenzene, together with $C_6H_6 = 26\cdot 2$ and $H = 1\cdot 1$. ² Thomson, J., 1944, 404. ³ Tiganik, Z. physikal. Chem., 1931, B, **13**, 425.

Comparison with Previous Measurements.—Nitro- and chloro-benzene have been frequently studied (cf. Cleverdon and Smith, Trans. Faraday Soc., 1949, 45, 109; Le Fèvre, *ibid.*, 1950, 46, 1, for references). Where several of the remaining compounds are concerned previous data were not always consistent; these cases are summarised in Table II and may be compared with our values, shown by asterisks. It should be noted that, in our calculations, we have used the latest values for Avogadro's number and Boltzmann's constant (Birge, *Reports Prog. Physics*, 1941, 8, 126; *J.*, 1946, 219). The conversion of earlier dipole-moment values to our basis requires multiplication by 1.006.

Discussion.—In a general way it is obvious that substitution in the positions ortho- to groups such as methoxy, nitro, etc., may effect the configurations of the latter and so, by induction, inhibition of resonance, or valence deflection, influence the resultant molecular moment of the derivative. Much more experimental evidence will be needed before the "weights" of these causes can be assessed, and the position at present is still as stated by Watson (Ann. Reports, 1939, 36, 215; 1942, 38, 124) in the concluding paragraph of his review of the various manifestations of the "ortho-effect." Indeed, where the polarities now recorded are concerned there are two further complications : (a) that recent work (Bastiansen and Hassel, Acta Chem. [1950]

Scand., 1947, 1, 489; cf. Angus, Bailey, Hale, Ingold, Leckie, and Raison, J., 1936, 971) suggests that valency deflections above or below—as well as in—the C₆ plane may occur when adjacent positions are highly crowded, and (b) that, especially with s-trinitro-derivatives, the "refractivity" method of calculation, applied in Table I, fails to make adequate allowance for the atomic polarisations (cf. Sutton, Ann. Reports, 1940, 37, 57), so that for the 1:3:5-trinitro-derivatives of benzene and mesitylene apparent moments ca. 0.7 D. are indicated. Yet if this figure be applied as a "correction" in the cases of picryl chloride, T.N.T., trinitrobutylxylene, and trinitroanisole, only with the last is there no excess over the moment of the un-nitrated compound.

Solvent Influences with Anisole and Acetophenone.—The moments of these two molecules have been determined in the gaseous state by Groves and Sugden (J., 1937, 1782; J., 1935, 971)as 1.35 and 3.00 D. respectively. From the worked example (ether) shown in the 1937 paper it seems that these figures, before incorporation with our present data into $\mu^2_{\text{solution}}/\mu^2_{\text{gas}}$ ratios, should also (see above) be multiplied by 1.006. After this adjustment, they become 1.36 and 3.02 D.

TABLE II.

Anisole. 0.8¹, 1.16², 1.23³, 1.22⁴, 1.28⁵, 1.30^{*}. *p*-Nitroanisole. 4.36⁶, 4.78⁷, 4.74⁸, 4.82^{*}. 2:4:6-Trichlorotoluene. 0.57⁹, (0.6₆)^{*}. Nitromesitylene. 3.67¹⁰, 3.64¹¹, 3.7₁^{*}. 1:3:5-Trichlorobenzene. 0.28¹³, 0.31^{*}. 1-Chloro-2:4-dinitrobenzene. 3.29¹³, 3.00¹⁴, 3.2₄^{*}. Acetophenone. 2.97¹⁶, 2.88¹⁷, 2.96¹⁸, 2.96¹⁸, 2.89^{*}. 4-Methylacetophenone. 3.23¹⁹, 3.2₃^{*}. 2:4:6-Trimethylacetophenone. 2.71¹⁷, 2.81¹⁸, 2.79^{*}. 1:3-Dinitrobenzene. 3.02²⁰, 3.70²⁰, 3.81²¹, 3.78²², 3.96²³, 3.86^{*} 2:5-Dichloronitrobenzene. 3.45²⁴, 3.45²⁵, 3.4₈^{*}.

2: 0-DICHOFONITFODENZENE. 3:40 ", 3:40 ", 3:43".
¹ Estermann, Z. physikal. Chem., 1928, B, 1, 134.
² Hojendahl, Thesis, Copenhagen, 1928, p. 105.
³ Donle and Volkert, Z. physikal. Chem., 1930, B, 8, 60.
⁴ Phadke, Gokhale, Phalniker, and Bhide, J. Indian Chem. Soc., 1945, 22, 235.
⁵ Everard and Sutton, J., 1949, 2312.
⁶ Ref. 2, p. 106.
⁷ Donle and Gehrckens, Z. physikal. Chem., 1932, B, 18, 316.
⁸ Cowley and Partington, J., 1933, 1258,
⁹ Maryott, Hobbs, and Gross, J. Amer. Chem. Soc., 1940, 62, 2320.
¹⁰ Hammick, New, and Williams, J., 1934, 29.
¹¹ Brown, de Bruyne, and Gross, J. Amer. Chem. Soc., 1934, 56, 1291.
¹³ Tiganik, Z. physikal Chem., 1931, B, 13, 425.
¹⁴ Hassel and Naeshagen, *ibid.*, 1929, B, 4, 217; Hassel and Uhl, *ibid.*, 1930, B, 8, 187.
¹⁶ Fuchs and Donle, *ibid.*, 1933, B, 22, 1.
¹⁷ Kadesch and Weller, J. Amer. Chem. Soc., 1941, 63, 1310.
¹⁸ Cherrier, Compt. rend., 1947, 225, 1306.
¹⁹ Bentley, Everard, Marsden, and Sutton, J., 1949, 2957.
²⁰ Ref. 2, pp. 85-89.
²¹ Williams, Physikal. Z., 1928, 29, 174; Williams and Schwingel, J. Amer. Chem. Res. Japan, 1941, 20, 218.
²⁴ Ref. 13.
²⁵ Thomson, J., 1944, 404.

TABLE III.

	$n_{\rm D}^{25}$.	Exp. x ² .	$\mu_{C_sH_s}$.	(μ_{sas}) , calc.	(μ_{gas}) , found.
Anisole Acetophenone	$1.5147 \\ 1.5308$	0·664 0·590	$1.30 \\ 2.89$	1·36 3·06	$1.36 \\ 3.02$

As a further test of its usefulness, the Barclay-Le Fèvre relation (J., 1950, 556) has been applied (Table III) to anisole and acetophenone on the assumptions that both molecules are planar and that $\mu_{\text{resultant}}$ bisects a C-O-Me angle of 110° in one case and acts collinearly with the C=O link in the other. Details are explained in the reference just cited; $(n_D^2)_{C_{\text{eH}}}^{25}$ is taken as 2.2417.

Agreement between prediction and experiment is satisfactory. With the exception of certain amines (cf. Barclay and Le Fèvre, *Trans. Faraday Soc.*, in the press) these are the first structures having moments off an axis of symmetry, upon which the new equation has been tried.

It will be noted that $\delta\mu(=\mu_{soln.}-\mu_{gas})$ is, for anisole, -0.06, and for acetophenone, -0.13 D., viz., approximately as 1:2. According to Leiser (*Abh. Dtsch. Bunsen-Ges.*, 1910, 67) these two substances have electric double refractions related as ca. 1:57, so that—as with aniline (Le Fèvre, Roberts, and Smythe, *J.*, 1949, 902) or methylene dichloride (Barclay and Le Fèvre, *J.*, 1950, 556)—neither the sign nor the magnitude of this property is necessarily a good guide to the type of solvent action to be expected (cf. also, Le Fèvre and Ross, *J.*, 1950, 283).

EXPERIMENTAL.

Materials.—Unless otherwise stated, these were commercial specimens. Anisole was dried over phosphoric oxide and distilled; it had b. p. $153-154^{\circ}/ca$. 750 mm. 3-Methyl-5-tert.-butylanisole, from

isobutyl bromide, m-tolyl methyl ether, and aluminium chloride (Baur, Ber., 1894, 27, 1616), was isobutyl bromide, *m*-tolyl methyl ether, and aluminum chloride (Baur, Ber., 1894, 27, 1616), was collected at $220-225^{\circ}/758$ mm. *p*-Nitroanisole, crystallised from light petroleum, had m. p. 51°. 2:4:6-Trinitroanisole, from picryl chloride and sodium methoxide (Brady and Horton, *J.*, 1925, 2230), had m. p. 68° after two crystallisations (methyl alcohol). "Musk Ambrette" (Baur, D.R.P. 62,362/1891; for constitution see Fuson *et al.*, *J. Org. Chem.*, 1947, **12**, 587), recrystallised several times from alcohol, had m. p. 83°. 2:4:6-Trichlorotoluene, prepared following Cohen and Dakin (*J.*, 1902, **81**, 1335), had m. p. 33° after distillation. Mesitylene was purified as described by Le Fèvre (*J.*, 1933, 980) for *p*-cymene and had b. p. 163-164°, d_4^{25} 0.8595, n_2^{25} 1.4969. Nitromesitylene, prepared by the method of *Org. Synth.*, **14**, 68, had m. p. 44° (from methyl alcohol). T.N.T., recrystallised from nitric acid and subsequently from a benzene-ethanol mixture, melted at 82°. Baur's directions (*Ber.*, 1891 294, 2840) afforded *5-tert*, butyl-m-xvlene b, p. 203°(759 mm. Trichlorobenzene m. p. 63-64° was nitric acid and subsequently from a benzene-ethanol mixture, melted at 82°. Baur's directions (Ber., 1891, 24, 2840) afforded 5-tert.-butyl-m-xylene, b. p. 203°/759 mm. Trichlorobenzene, m. p. 63-64°, was obtained from 2: 4:6-trichloroaniline (Jackson and Lamar, Amer. Chem. J., 1896, 18, 667). 1-Chloro-2:4-dinitrobenzene had m. p. 50-51° (from ether). Picryl chloride, prepared from picric acid by the method of Gazzolo and Jackson (Amer. Chem. J., 1900, 23, 384; cf. Brady and Horton, loc. cit.) and recrystallised from ligroin, had m. p. 83°. Acetophenone, dried over calcium chloride, was distilled immediately before use, and had b. p. 200°/758 mm. 4-Methylacetophenone, from toluene, etc. (cf. Adams and Noller, J. Amer. Chem. Soc., 1924, 46, 1889), was treated similarly to the previous substance, and had b. p. 225°/736 mm. Trimethylacetophenone (Noller and Adams, loc. cit.) had b. p. 123°/20 mm. Dinitrodimethyl-tert.-butylacetophenone was a specimen of "Musk ketone" with m. p. 135-136° (Baur, Ber., 1898, 81, 1344, gives 136°) after successive crystallisations from acetic acid and alcohol. 3-Nitro-4-methylacetophenone, prepared had m. p. 89-90°, and 2:5-dichloronitrobenzene, m. p. 55-56° (both from alcohol; cf. Cohen and Bennett, J., 1905, 87, 322, for the second compound). Benzene (as solvent) was AnalaR material to which sodium wire had been added, and one-third frozen, decanted, remelted, and left for 2 days before use. one-third frozen, decanted, remelted, and left for 2 days before use.

Measurements.—These have involved the resonance circuits of Le Fèvre and Russell (Trans. Faraday Soc. 1947, 43, 374), and the simpler arrangement now in use in Sydney (cf. Calderbank and Le Fèvre, J., 1948, 1949). Data are set out below under the usual symbols (cf. "Dipole Moments," Methuen, 1938, Chap. II). Those cases where the concentrations are shown as molar fractions (f_1) are our earliest best values the concentrations are shown as main fractions (f_1) are one called observations, taken in 1935–36. For uniformity, we have calculated dielectric constants and densities relatively to benzene ($e^{25} = 2.2725$ and $d_{25}^{25} = 0.87378$). When ae_2 or βd_2 has appeared non-rectilinear with composition, the extrapolation procedure of Le Fèvre (*Trans. Faraday Soc.*, 1950, **46**, 1) has been adopted.

	•	
4	MAC	010
	1443	ULC.

		P-4	Nitroanis	ole.	
	1025	1046	2543	3114	3186
	$2 \cdot 4434$	2.4471	2.7001	2.7982	
)	0.87619	0.87625	0.87976	0.88110	0.88128

15.144

2.3166

0.87694

96·1

9861

2.2757

0.87686

11,462

0.87608

96.8

 $2 \cdot 3053$

$10^{5}w_{1}$	1223	1891	2551	5692	9148	1025	1046	2543	3114	3186
ε ²⁵	$2 \cdot 2933$	$2 \cdot 3067$	2.3171	2.3727	$2 \cdot 4389$	$2 \cdot 4434$	2.4471	2.7001	2.7982	
d_{A}^{25}	0.87533	0.87618	0.87705	0.88107	0.88540	0.87619	0.87625	0.87976	0.88110	0.88128
$\vec{P_{1}}$ (c.c.)	65·8 ₆	67.9_{1}	66·5 ₃	66·1 ₇	66·7 ₀	498 ·2	498.3	475.0	467.2	-
Mea	an a $\epsilon_2 =$	1.76 ₈ ; m	ean $\beta d_2 =$	= 0·127 ₄ .		(ae2) w1 - 0 ima	$= 16.5_8$ (stely const	graphical tant, me	$\begin{array}{llllllllllllllllllllllllllllllllllll$	s approx- 353.

2:4:6-Trinitroanisole.

$10^{6}f_{1}$ ϵ^{25} d_{4}^{25}	2622·5 2·2882 0·87680	8002·3 2·3211 0·88345	13,160 2·3532 0·88993	14,501 2·3608 0·89164
$P_1^{u_4}$ (c.c.)	134.5	134.2	134.1	133.2
	D /	1 1 1 1	1010	

$_{\infty} P_1$ (graphically) = 134.6 c.c.

2: 4-Dinitro-3-methyl-6-tert.-butylanisole (" Musk Ambrette ").

		,			
10 ⁶ w,	27,224	46,115	48,947	69,547	
ε ²⁵	2.4116	$2 \cdot 5121$	2.5278	2.6411	
d_{1}^{25}	0.88102	0.88570	0.88650	0.89168	
$\vec{P_1}$ (c.c.)	311.3	309·4	$309 \cdot 2$	$306 \cdot 1$	

 $(a\varepsilon_2)_{w_1=0} = 4.98$ graphically; mean $\beta d_2 = 0.260_4$.

	2:4:6-Tr	initrotoluene.			Me
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$1883 \\ 2.2786 \\ 0.87596 \\ 90.6$	3220 2·2822 0·87750 86·8	$5420 \\ 2.2886 \\ 0.88001 \\ 86.2$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 0

$\Sigma (P_{12} - P_2) / \Sigma f_1 = 60.64$, whence $_{\infty} P_1 = 87.2_2$ c.c.

Nitromesitylene.			2:	4:6-Tri	
$10^5 w_1 \dots w_1$ $\epsilon^{25} \dots w_1$ $d_4^{25} \dots w_4$	$\begin{array}{c} 1012 \\ 2 {\cdot} 3658 \\ 0 {\cdot} 87545 \end{array}$	$2591 \\ 2 \cdot 5090 \\ 0 \cdot 87805$	2613 2·5111 0·87809	1019 2·2737 0·87711	1 2·2 0·8
P_{1} (c.c.)	$325 \cdot 1$	$312 \cdot 8$	312.7	42.8	4

Mean $\alpha \varepsilon_2 = 9.14_4$; mean $\beta d_2 = 0.164_9$.

54.8	55.0	55.0
$\Sigma(\varepsilon_{12} - \Sigma(d_{12} - d_{12}))$	$(-\epsilon_2)/\Sigma w_1 = 0$ $(-d_2)/\Sigma w_1 = 0$	0- 3 281 ; 0- 311₈ .
Me	sitylene.	

2:4:6-Trichlorotoluene.

12.135

 $2 \cdot 2765$

0.87756

19.244

 $2 \cdot 3269$

0.87789

95.9

29.593

0.87996

94·1

20,661

2.2793

0.88022

 $2 \cdot 3564$

3-Methyl-5-tert.-butylanisole.

Mean $a\varepsilon_2 = 2.85_2$; mean $\beta d_2 = 0.208_8$.

10 ⁶ w,	32,061	54,882
ε ²⁵	$2 \cdot 2710$	$2 \cdot 2703$
d ²⁵	0.87250	0.87158
$\vec{P_1}$ (c.c.)	41.7	41 ·9

chlorobenzene.

1019	1130	2098
2.2737	$2 \cdot 2739$	2.2750
0.87711	0.87747	0.88063
42.8	43 ·1	42.7

Mean $a\epsilon_2 = 0.120_1$; mean $\beta d_1 = 0.326_4$.

[1950]

1-Chloro-2: 4-dinitrobenze	Picryl chloride.					
10 ⁶ w ₁ 6215 7316 824	1 9918	$10^{6}f_{1}$	2245	3216	6197	6205
ϵ^{25} 2.3080 2.3149 2.320	5 2.3303	ε ²⁵	2.2768	2.2796	2.2883	2.2869
$a_4^{a_5}$ 0.87624 0.87669 0.877 $P_{\rm e}$ (c.c.) 253.1 296.5 256	3 255.9	P_{1} (c.c.)	71·0	73·6	77.6	0·8829 73·8
Mean $\alpha \varepsilon_{2} = 5.79$: mean $\beta d_{2} = 0.396_{g}$. $\Sigma(P_{12} - P_{2})/\Sigma f_{1} = 48.2$, whence γP_{1}						
= 74.8 c.c.						
Acetophenon	4-Methylacetophenone.					
$10^5 w_1 \dots 801 \cdot 2 1986 211$	3 3202	3301	$10^{6}w_{1}$	8135	11,312	16,215
ϵ^{25} 2.3342 2.4314 2.439	4 2.5255	2·5333	ε ²⁰	2.3421	2.3692	2·4111
$P_{\rm r}$ (c.c.) 211.7 208.3 205	.7 202.2	201.9	P_{1} (c.c.)	251.6	250.1	247.8
Mean $a\epsilon_2 = 8.08$; mean $\beta d_2 = 0.136_5$. $\Sigma(\epsilon_{12} - \epsilon_2) / \Sigma w_1 = 8.55$;						
$\Sigma(d_{12} - d_2) / \Sigma w_1 = 0.117_7.$						
			3:5-Dinit	ro-2 : 6-dir	<i>nethyl</i> -4-t	ert
2:4:6-Trimethylacetophenone. butylacetophenone.						
$10^{6}w_{1} \dots 9981 11,561 12,889 10^{25} 2.2995 2.3325 2.3415 2.561 $	13,102 21,951 .3426 2.3823	32,501 10 ⁶ 2.4448 c ²⁵	$f_1 \dots 380$)1·0 8525 26 2.362	$ \begin{array}{cccc} \cdot 0 & 12,777 \\ 2 & 2.4058 \end{array} $	15,119
d_{25}^{25} 0.87432 0.87460 0.87473 0	·874750·87538	$0.87628 d_{1}^{25}$	0.87	728 0·881	610.8855	0.0.88762
$\vec{P}(\text{c.c.})$ 202.6 209.1 211.1 210.9 199.0 205.3 $\vec{P}_1(\text{c.c.})$ 226.8 225.5 223.5 223.1						
$\Sigma(\varepsilon_{12} - \varepsilon_2) / \Sigma w_1 = 5.22; \Sigma(d_{12} - d_2) / \Sigma w_1 = 0.072_4, \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$						
$\sim P$, (graphically) = 228.2 c.c.						
* The benzene used had $n_{\rm D} = 1.49733$.						
2 Nitro 4 mathelacetophonone 1 · 2 Dinitropensone						
3-17170-4-methylacetophenone	8155.4 10	5 er 6176	1.0-2000	10 999	16 997	19 957
ϵ^{25} 0.3348 2.3451 2.3991	$2.4065 \epsilon^{25}$	2.3333	3 2·3614	2.3741	2.4402	2.4705
d_4^{25} 0.87560 0.87593 0.87758	$0.87777 d_{1}^{23}$	0.8759	90 0.8768	0.87733	0.87967	0.88075
P_1 920.9 287.8 282.0 P_2 (graphically) = 208.0 ($281.4 P_1$	(c.c.) 340·8) 338.3 _ 0.80 · (4	338·1 24 \	333.9	331.8
$\infty r_1 (\text{graphically}) = 250.5 \text{ c.c.} \qquad (ac_2/w_1 = 0 - 5.00, (\mu w_2/w_1 = 0 = 0.340_2.$ (Both by graphical extrapolation)						
(Doth by Fraphica Oxtrapolation.)						
2 : 5-Dichloronitrobenzene.						
$10^{\circ} w_1$	10,123	12,105	17,501 2.3898	25,13	1 3	0,021
d ²⁵	0.87764	0.87840	0.88046	0.883	37 0	88524
\vec{P}_{1} (c.c.)	278.4	276.6	270.9	263.	<u>ن</u> ۱	258.5

 $(\alpha \epsilon_2)_{m_1=0} = 7.01 \text{ (graphically); } \beta d_2 \text{ (average)} = 0.381_8.$

The authors thank the Chemical Society and the Commonwealth Science Fund for grants which have assisted this work.

UNIVERSITY OF SYDNEY, N.S.W., AUSTRALIA.

[Received, March 8th, 1950.]