370. The Apparent Polarities of a Number of Substituted Chloro-, Nitro-, Methyl-, Methoxy-, and Acetyl-benzenes.

By (Mrs.) C. G. Le Fèvre and R. J. W. Le Fèvre.

The apparent dipole moments, in benzene at 25° (refractivity method), of some 19 substances are recorded. When the aromatic nucleus has three or more substituent groups the molecular polarities cannot be predicted accurately or explained generally by any one alone of a number of qualitative treatments, already described in, or indicated by, the literature.

The Barclay-Le Fèvre relation (J., 1950, 556) is found to provide, from data for benzene solutions, a satisfactory estimate of the moments, as measured in the gaseous state, of anisole and acetophenone.

Kadesch and Weller (J. Amer. Chem. Soc., 1941, 63, 1310) have reported the dipole moment of acetylmesitylene as 2.71 D . and attributed the difference between this figure and that found by them for acetophenone, viz., 2.88 D. , to steric inhibition of mesomerism (cf. Birtles and Hampson, J., 1937, 10; Ingham and Hampson, J., 1939, 981). The purpose of the present communication is to put on record a number of determinations, of which that for acetylmesitylene was one, started at University College, London, during 1935-39, to compare the moments of various monosubstituted benzene derivatives with those of derivatives which, by crude vectorial arguments based on a regular hexagonal C_{6} skeleton, should have had the same values. The work was originally suggested by suppositions (Le Fèvre and Le Fèvre, J., 1935, 957) which,
after the appearance of Hampson's papers, seemed much less necessary. Our results may, however, have a residual usefulness. They are given in Table I below, together with figures for a few related substances. Benzene has been the solvent throughout.

Table I.
Compound.
$\underset{\text { (c.c.). }}{\infty} \quad\left[R_{1} P_{\mathrm{L}}\right]_{\mathrm{D}}$.

$\mu_{\text {apparent, }}$
(A) Anisole series.

Anisole	$67 \cdot 4$	33.0 *	34-4	$1 \cdot 30$	Present work.
3-Methyl-6-tert.-butylanisole.	96.0	$56.6 \dagger$	$39 \cdot 4$	$1 \cdot 39$	
p-Nitroanisole	$515 \cdot 0$	$39 \cdot 6{ }^{1}$	$475 \cdot 4$	$4 \cdot 8{ }_{2}$	",
2:4:6-Trinitroanisole	134.6	$50 \cdot 6 \dagger$	$84 \cdot 0$	$2 \cdot{ }_{3}$	",
" Musk Ambrette"	$315 \cdot 3$	$67 \cdot 3 \dagger$	248.0	$3 \cdot 4{ }_{8}$	",

(B) Toluene series.

Toluene	33.5	$31 \cdot 1$ *	$2 \cdot 4$	(0.34)	$J ., 1935,480$.
2:4:6-Trichlorotoluene	$54 \cdot 9$	$46 \cdot 1 \dagger$	$8 \cdot 8$	$0 \cdot 6{ }_{6}$	Present work
2:4:6-Trinitrotoluene	87.2	$48.7 \dagger$	38.5	$1 \cdot 37$,
Mesitylene	41.8	$40 \cdot 6$ *	1.2	(0.24)	,
Nitromesitylene	329.4	$47.0{ }^{2}$	$282 \cdot 4$	3.71	
Trinitromesitylene	$70 \cdot 5$	59.2	11.3	(0.74)	$J ., 1935,957$
5-tert.-Butyl-m-xylene	56.5	$55 \cdot 2$	1.3	(0.25)	J., 1935, 488
2:4:6-Trinitro-5-tert.-butyl-m-xylene	98.5	$72 \cdot 2$	26.3	$1 \cdot 13$	$J ., 1935,957$
(C) Chlorobenzene series.					
Chlorobenzene.	$83 \cdot 3$	31-1*	$52 \cdot 2$	1.60	Trans. Faraday Soc. 1950, 46, 1
1:4-Dichlorobenzene	37.7	$36.2{ }^{2}$	1.5	(0.27)	$J ., 1936,487$
1:3:5-Trichlorobenzene	$42.8{ }_{5}$	$40 \cdot 9{ }^{3}$	1.95	(0.31)	Present work
1-Chloro-2: 4-dinitrobenzene	258.2	$43 \cdot 0+$	215.2	3.24	,,
Picryl chloride ...	$74 \cdot 8$	$48.8 \dagger$	$26 \cdot 0$	$1 \cdot 13$	

* From Landolt-Bornstein-Roth, "Tabellen," 4th Edn., p. 1027. † Calc. from the preceding asterisked datum, by using the group refractivities listed by Vogel, J., 1948, 1842.
${ }^{1}$ Calc. from figures for anisole and nitrobenzene, together with $\mathrm{C}_{6} \mathrm{H}_{6}=26.2$ and $\mathrm{H}=1 \cdot 1$.
${ }^{2}$ Thomson, J., 1944, 404. ${ }^{3}$ Tiganik, Z. physikal. Chem., 1931, B, 13, 425.
Comparison with Previous Measurements.-Nitro- and chloro-benzene have been frequently studied (cf. Cleverdon and Smith, Trans. Faraday Soc., 1949, 45, 109; Le Fèvre, ibid., 1950, 46, 1, for references). Where several of the remaining compounds are concerned previous data were not always consistent; these cases are summarised in Table II and may be compared with our values, shown by asterisks. It should be noted that, in our calculations, we have used the latest values for Avogadro's number and Boltzmann's constant (Birge, Reports Prog. Physics, $1941,8,126 ; J ., 1946,219$). The conversion of earlier dipole-moment values to our basis requires multiplication by $1 \cdot 006$.

Discussion.-In a general way it is obvious that substitution in the positions ortho- to groups such as methoxy, nitro, etc., may effect the configurations of the latter and so, by induction, inhibition of resonance, or valence deflection, influence the resultant molecular moment of the derivative. Much more experimental evidence will be needed before the " weights" of these causes can be assessed, and the position at present is still as stated by Watson (Ann. Reports, $1939,36,215 ; 1942,38,124$) in the concluding paragraph of his review of the various manifestations of the " ortho-effect." Indeed, where the polarities now recorded are concerned there are two further complications: (a) that recent work (Bastiansen and Hassel, Acta Chem.

Scand., 1947, 1, 489 ; cf. Angus, Bailey, Hale, Ingold, Leckie, and Raison, J., 1936, 971) suggests that valency deflections above or below-as well as in-the C_{6} plane may occur when adjacent positions are highly crowded, and (b) that, especially with s-trinitro-derivatives, the " refractivity" method of calculation, applied in Table I, fails to make adequate allowance for the atomic polarisations (cf. Sutton, Ann. Reports, 1940, 37, 57), so that for the 1:3:5-trinitroderivatives of benzene and mesitylene apparent moments $c a .0 .7 \mathrm{D}$. are indicated. Yet if this figure be applied as a " correction" in the cases of picryl chloride, T.N.T., trinitrobutylxylene, and trinitroanisole, only with the last is there no excess over the moment of the un-nitrated compound.

Solvent Influences with Anisole and Acetophenone.-The moments of these two molecules have been determined in the gaseous state by Groves and Sugden ($J ., 1937,1782$; J., 1935, 971) as 1.35 and 3.00 D . respectively. From the worked example (ether) shown in the 1937 paper it seems that these figures, before incorporation with our present data into μ^{2} solution $/ \mu^{2}$ gas ratios, should also (see above) be multiplied by 1.006 . After this adjustment, they become 1.36 and 3.02 D.

Table II.
Anisole. $0.8^{1}, 1.16^{2}, 1.23^{3}, 1.224,1.28^{5}, 1.30^{*}$.
p-Nitroanisole. $4 \cdot 36^{\prime}, 4 \cdot 78^{\prime} 7^{7} 4 \cdot 74^{8}, 4 \cdot 82^{*}$.
2: 4: 6-Trichlorotoluene. $0.57^{\text { }},\left(0.6_{6}\right)$ *. Nitromesitylene. $3.67{ }^{10}, 3.64{ }^{11}, 3.7_{1}{ }^{*}$. $1: 3$: 5-Trichlorobenzene. $0.28^{12}, 0.31^{*}$. 1-Chloro-2: 4-dinitrobenzene. $3 \cdot 29{ }^{13}, 3 \cdot 00{ }^{14}, 3 \cdot 2_{4}{ }^{*}$. Acetophenone. $2.97{ }^{16}, 2.88{ }^{17}, 2.96{ }^{18}, 2.96{ }^{18}, 2.89$ *. 4-Methylacetophenone. $3 \cdot 23^{19}, 3 \cdot 2_{3}{ }^{\prime}$.
2:4:6-Trimethylacetophenone. $2.71^{17}, 2.81^{18}, 2.79{ }^{*}$.
1 : 3-Dinitrobenzene. $4 \cdot 02^{20}, 3 \cdot 70^{20}, 3 \cdot 81^{21}, 3 \cdot 78^{22}, 3 \cdot 96^{23}, 3 \cdot 86{ }^{*}$
2 : 5-Dichloronitrobenzene. $3 \cdot 45^{24}, 3 \cdot 45{ }^{25}, 3 \cdot 4{ }_{8}{ }^{*}$.
${ }^{1}$ Estermann, Z. physikal. Chem., 1928, B, 1, 134. ${ }^{2}$ Højendahl, Thesis, Copenhagen, 1928, p. 105. ${ }^{3}$ Donle and Volkert, Z. physikal. Chem., 1930, B, 8, 60. *Phadke, Gokhale, Phalniker, and Bhide, J. Indian Chem. Soc., 1945, 22, 235. ${ }^{5}$ Everard and Sutton, J., 1949,2312. ${ }^{6}$ Ref. 2, p. 106. ${ }^{7}$ Donle and Gehrckens, Z. physikal. Chem., 1932, B, 18, 316. ${ }^{8}$ Cowley and Partington, J., 1933, 1258, ${ }^{\circ}$ Maryott, Hobbs, and Gross, J. Amer. Chem. Soc., 1940, 62, 2320. ${ }^{10}$ Hammick, New, and Williams, J., 1934, 29. ${ }^{11}$ Brown, de Bruyne, and Gross, J. Amer. Chem. Soc., 1934, 56, 1291. ${ }^{12}$ Tiganik, Z.' physikal Chem., 1931, B, 13, 425. ${ }^{13}$ Hassel and Naeshagen, ibid., p. 79. 16 Lütgert, ibid., 1932, $B, 17,460 .{ }^{15}$ Hassel and Naeshagen, ibid., 1929, B, 4, 217 ; Hassel and Uhl, ibid., 1930, B, 8, 187. ${ }_{16}$ Fuchs and Donle, ibid., 1933, B, 22, 1. 17 Kadesch and Weller, J. Amer. Chem. Soc., 1941, 63, 1310. ${ }^{18}$ Cherrier, Compt. rend., 1947, 225, 1306. ${ }^{19}$ Bentley, Everard, Marsden, and Sutton, J., 1949, 2957. ${ }^{20}$ Ref. 2, pp. 85-89. ${ }^{21}$ Williams, Physikal. Z., 1928, 29, 174 ; Williams and Schwingel, J. Amer. Chem. Soc., 1928, 50, 362. ${ }^{22}$ Ref. 12. ${ }^{23}$ Higasi, Bull. Inst. Phys. Chem. Res. Japan, 1941, 20, 218. ${ }^{24}$ Ref. 13. ${ }^{25}$ Thomson, J., 1944, 404.

Table III.					
	$n{ }^{25}$.	Exp. x^{2}.	$\mu_{\mathrm{CO}_{6} \mathrm{H}_{6}}$.	(μ_{698}), calc.	($\mu_{\text {gas }}$), found.
Anisole	1.5147	$0 \cdot 664$	$1 \cdot 30$	$1 \cdot 36$	$1 \cdot 36$
Acetophenone	1.5308	$0 \cdot 590$	$2 \cdot 89$	$3 \cdot 06$	$3 \cdot 02$

As a further test of its usefulness, the Barclay-Le Fèvre relation ($J ., 1950,556$) has been applied (Table III) to anisole and acetophenone on the assumptions that both molecules are planar and that $\mu_{\text {resultant }}$ bisects a $\mathrm{C}-\mathrm{O}-\mathrm{Me}$ angle of 110° in one case and acts collinearly with the $\mathrm{C}=\mathrm{O}$ link in the other. Details are explained in the reference just cited; $\left(\boldsymbol{n}_{\mathrm{D}}^{2}\right)_{\mathrm{C}_{\mathbf{D}}}^{25}$ is taken as 2.2417 .

Agreement between prediction and experiment is satisfactory. With the exception of certain amines (cf. Barclay and Le Fèvre, Trans. Faraday Soc., in the press) these are the first structures having moments off an axis of symmetry, upon which the new equation has been tried.

It will be noted that $\delta \mu\left(=\mu_{\text {soln. }}-\mu_{\mathrm{gas}}\right)$ is, for anisole, -0.06 , and for acetophenone, $-0.13 \mathrm{D} .$, viz., approximately as $1: 2$. According to Leiser (Abh. Dtsch. Bunsen-Ges., 1910, 67) these two substances have electric double refractions related as ca. $1: 57$, so that-as with aniline (Le Fèvre, Roberts, and Smythe, J., 1949, 902) or methylene dichloride (Barclay and Le Fèvre, $J ., 1950,556$) -neither the sign nor the magnitude of this property is necessarily a good guide to the type of solvent action to be expected (cf. also, Le Fèvre and Ross, J., 1950, 283).

Experimental.

Materials.-Unless otherwise stated, these were commercial specimens. Anisole was dried over phosphoric oxide and distilled; it had b. p. $153-154^{\circ} /$ ca. 750 mm . 3-Methyl-5-tert.-butylanisole, from
isobutyl bromide, m-tolyl methyl ether, and aluminium chloride (Baur, Ber., 1894, 27, 1616), was collected at $220-225^{\circ} / 758 \mathrm{~mm}$. p-Nitroanisole, crystallised from light petroleum, had m. p. 51°. 2: 4: 6-Trinitroanisole, from picryl chloride and sodium methoxide (Brady and Horton, J., 1925, 2230), had m. p. 68° after two crystallisations (methyl alcohol). "Musk Ambrette" (Baur, D.R.P. 62,362/1891; for constitution see Fuson et al., J. Org. Chem., 1947, 12, 587), recrystallised several times from alcohol, had m. p. 83 ${ }^{\circ}$. 2:4:6-Trichlorotoluene, prepared following Cohen and Dakin (J., 1902, 81, 1335), had m. p. 33° after distillation. Mesitylene was purified as described by Le Fèvre ($J ., 1933,980$) for p-cymene and had b. p. $163-164^{\circ}, d_{4}^{25} 0.8595, n_{\mathrm{D}}^{25} 1 \cdot 4969$. Nitromesitylene, prepared by the method of Org. Synth., 14, 68, had m. p. 44° (from methyl alcohol). T.N.T., recrystallised from nitric acid and subsequently from a benzene-ethanol mixture, melted at 82°. Baur's directions (Ber., 1891, 24, 2840) afforded 5-tert.-butyl-m-xylene, b. p. $203^{\circ} / 759 \mathrm{~mm}$. Trichlorobenzene, m. p. $63-64^{\circ}$, was obtained from 2: 4: 6-trichloroaniline (Jackson and Lamar, Amer. Chem. J., 1896, 18, 667). 1-Chloro2: 4-dinitrobenzene had m. p. $50-51^{\circ}$ (from ether). Picryl chloride, prepared from picric acid by the method of Gazzolo and Jackson (Amer. Chem. J., 1900, 23, 384; cf. Brady and Horton, loc. cit.) and recrystallised from ligroin, had m. p. 83°. Acetophenone, dried over calcium chloride, was distilled immediately before use, and had b. p. $200^{\circ} / 758 \mathrm{~mm}$. 4-Methylacetophenone, from toluene, etc. (cf. Adams and Noller, J. Amer. Chem. Soc., 1924, 46, 1889), was treated similarly to the previous substance, and had b. p. $225^{\circ} / 736 \mathrm{~mm}$. Trimethylacetophenone (Noller and Adams, loc. cit.) had b. p. $123^{\circ} / 20 \mathrm{~mm}$. Dinitrodimethyl-tert.-butylacetophenone was a specimen of "Musk ketone" with m. p. 135-136 ${ }^{\circ}$ (Baur, Ber., 1898, 31, 1344, gives 136°) after successive crystallisations from acetic acid and alcohol. 3-Nitro-4-methylacetophenone, prepared by direct nitration (cf. Errera, Gazzetta, 1891, 21, 92), had m. p. 61° (from light petroleum). 1:3-Dinitrobenzene had m. p. 89-90 ${ }^{\circ}$, and $2: 5$-dichloronitrobenzene, m. p. 55-56 (both from alcohol; cf. Cohen and Bennett, J., 1905, 87, 322, for the second compound). Benzene (as solvent) was AnalaR material to which sodium wire had been added, and one-third frozen, decanted, remelted, and left for 2 days before use.

Measurements.-These have involved the resonance circuits of Le Fèvre and Russell (Trans. Faraday Soc., 1947, 43, 374), and the simpler arrangement now in use in Sydney (cf. Calderbank and Le Fèvre, $J_{.,}$1948, 1949). Data are set out below under the usual symbols (cf. "Dipole Moments," Methuen, 1938, Chap. II). Those cases where the concentrations are shown as molar fractions (f_{1}) are our earliest observations, taken in 1935-36. For uniformity, we have calculated dielectric constants and densities relatively to benzene ($\varepsilon^{25}=2 \cdot 2725$ and $d_{4}^{25}=0 \cdot 87378$). When $a \varepsilon_{2}$ or βd_{2} has appeared non-rectilinear with composition, the extrapolation procedure of Le Fèvre (Trans. Faraday Soc., 1950, 46, 1) has been adopted.

	2:4:6-Trinitroanisole.				3-Methyl-5-tert.-butylanisole.			
$10^{6} f_{1}$	$2622 \cdot 5$	8002-3	13,160	14,501	11,462	15,144	19,244	29,593
ε^{25}	2.2882	$2 \cdot 3211$	$2 \cdot 3532$	$2 \cdot 3608$	$2 \cdot 3053$	2.3166	$2 \cdot 3269$	$2 \cdot 3564$
d_{4}^{25}	0.87680	0.88345	0.88993	0.89164	$0 \cdot 87608$	0.87694	0.87789	$0 \cdot 87996$
P_{1} (c.c.)	134.5	$134 \cdot 2$	$134 \cdot 1$	$133 \cdot 2$	96.8	96-1	95.9	$94 \cdot 1$
	∞P_{1} (graphically) $=134 \cdot 6$ c.c.				Mean $\alpha \varepsilon_{2}=2.85_{2} ;$ mean $\beta d_{2}=0.208_{8}$.			

$$
2 \text { : 4-Dinitro-3-methyl-6-tert.-butylanisole (" Musk }
$$ Ambrette '").

$10^{6} w_{1}$	27,224	46,115	48,947	69,547
ε^{25}	$2 \cdot 4116$	$2 \cdot 5121$	2-5278	$2 \cdot 6411$
d_{4}^{25}	$0 \cdot 88102$	0.88570	$0 \cdot 88650$	0.89168
P_{1} (c.c.)	311.3	$309 \cdot 4$	309.2	306.1
$\left(a \varepsilon_{2}\right)_{w_{1}=0}=4.98$ graphically ; mean $\beta d_{2}=0.260_{4}$.				

$2: 4:$		- Trichlorotoluene.	
9861	12,135	20,661	
2.2757	2.2765	2.2793	
0.87686	$0 \cdot 87756$	$0 \cdot 88022$	
54.8	$55 \cdot 0$	$55 \cdot 0$	

$$
\Sigma\left(P_{12}-P_{2}\right) / \Sigma f_{1}=60 \cdot 64, \text { whence } \infty P_{1}=87 \cdot 2_{2} \text { c.c. }
$$

Nitromesitylene.

$10^{5} w_{1}$	1012	2591	2613
ε^{25}	$2 \cdot 3658$	2.5090	2.5111
d_{4}^{25}	$0 \cdot 87545$	0.87805	$0 \cdot 87809$
P_{1} (c.c.)	$325 \cdot 1$	$312 \cdot 8$	312.7
$=9 \cdot 14_{4} ;$ mean $\beta d_{2}=0 \cdot 164_{9}$.			

1019	1130	2098
2.2737	2.2739	2.2750
0.87711	0.87747	0.88063
42.8	$43 \cdot 1$	42.7
Mean $a \varepsilon_{2}=$	$0 \cdot 120_{1} ;$ mean $\beta d_{\varepsilon}=0.326_{4}$.	

1-Chloro-2: 4-dinitrobenzene.
Picryl chloride.

lor									
$10^{6} w_{1}$	6215	7316	8241	9918	$10^{6} f_{1}$	2245	3216	6197	6205
ε^{25}	$2 \cdot 3080$	$2 \cdot 3149$	$2 \cdot 3205$	$2 \cdot 3303$	ε^{25}.	$2 \cdot 2768$	$2 \cdot 2796$	$2 \cdot 2883$	$2 \cdot 2869$
d_{4}^{25}	$0 \cdot 87624$	$0 \cdot 87669$	$0 \cdot 87705$	0.87771	d_{4}^{25}	$0 \cdot 8769$	$0 \cdot 8784$	$0 \cdot 8828$	$0 \cdot 8829$
P_{1} (c.c.)	$253 \cdot 1$	296.5	256.3	$255 \cdot 9$	P_{1} (c.c.)	71.0	$73 \cdot 6$	77.6	73.8
Mean $\alpha \varepsilon_{2}=5 \cdot 79$; mean $\beta d_{2}=0.396{ }_{8}$.									

Acetophenone.
4-Methylacetophenone.

$10^{5} w_{1}$	801.2	1986	2113	3202	3301	$10^{6} w_{1}$	8135	11,312	
ε^{25}	$2 \cdot 3342$	2.4314	2.4394	$2 \cdot 5255$	$2 \cdot 5333$	ε^{25}.	$2 \cdot 3421$	$2 \cdot 3692$	$2 \cdot 4111$
d_{4}^{25}	0.87389	0.87649	0.87666	0.87815	0.87829	d_{4}^{25}	0.87474	0.87511	$0 \cdot 87569$
P_{1} (c.c.)	211.7	208.3	$205 \cdot 7$	$202 \cdot 2$	201.9	P_{1} (c.c.)	251.6	$250 \cdot 1$	247.8
Mean $a \varepsilon_{2}=8.08$; mean $\beta d_{2}=0.136_{5}$.						$\begin{aligned} & \Sigma\left(\varepsilon_{12}-\varepsilon_{2}\right) / \Sigma w_{1}=8.55 ; \\ & \Sigma\left(d_{12}-d_{2}\right) / \Sigma w_{1}=0.117_{7} . \end{aligned}$			

3:5-Dinitro-2: 6-dimethyl-4-tert.-
2:4:6-Trimethylacetophenone.

	9981	11,561	12,889	13,102	21,951	32,501			3801.0	8525	12,7	
	. 3225	$2 \cdot 3335$	$2 \cdot 3415$	$2 \cdot 3426$	$2 \cdot 3823$	2.4448			$2 \cdot 3126$	2.3622	$2 \cdot 4058$	$2 \cdot 4302$
	$0 \cdot 87432$	$0 \cdot 87460$	$0 \cdot 87473$	$0 \cdot 87475$	$0 \cdot 8753$	$0 \cdot 87628$	d_{4}^{25}		$0 \cdot 87728$	0.881	0.885	76
(c.c.)	$202 \cdot 6$	$209 \cdot 1$	211.1	$210 \cdot 9$	199.0	$205 \cdot 3$			226.8	225.5	$223 \cdot 5$	$223 \cdot 1$
$\Sigma\left(\varepsilon_{1}\right.$	- $\left.\varepsilon_{2}\right) / \Sigma$	$5 \cdot$	$\left(d_{12}\right.$	- $\left.d_{2}\right) / \Sigma$	$1=0$		${ }^{n_{0}}{ }_{1}$	с.)			$74 \cdot$	49875 74.8

∞P_{1} (graphically) $=228 \cdot 2$ c.c.

* The benzene used had $n_{\mathrm{D}}=1 \cdot 49733$.
3-Nitro-4-methylacetophenone.
1:3-Dinitrobenzene.

$10^{6} f_{1}$... 3695-4	4352-1	7689.6	$8155 \cdot 4$	$10^{6} w_{1}$	6176	9018	10,299	16,927	19,957
ε^{25}	. 0.3348	$2 \cdot 3451$	$2 \cdot 3991$	$2 \cdot 4065$	ε^{25}	$2 \cdot 3333$	$2 \cdot 3614$	$2 \cdot 3741$	$2 \cdot 4402$	$2 \cdot 4705$
d_{4}^{25}	$0 \cdot 87560$	0.87593	$0 \cdot 87758$	0.87777	d_{4}^{25}	$0 \cdot 87590$	0.87689	$0 \cdot 87733$	0.87967	0.88075
P_{1}	$920 \cdot 9$	287.8	282.0	281.4	P_{1} (c.c.)	340-8	$338 \cdot 3$	338.1	333.9	331.8

(Both by graphical extrapolation.)
2:5-Dichloronitrobenzene.

$10^{6}{ }^{*}$	10,123	12,105	17,501	25,131	30,021
ε^{25}	$2 \cdot 3416$	$2 \cdot 3548$	$2 \cdot 3898$	$2 \cdot 4376$	$2 \cdot 4673$
d^{25}	$0 \cdot 87764$	$0 \cdot 87840$	$0 \cdot 88046$	$0 \cdot 88337$	0.88524
P_{1} (c.c.)	$278 \cdot 4$	$276 \cdot 6$	$270 \cdot 9$	$263 \cdot 1$	258.5

$\left(a \varepsilon_{2}\right)_{m_{2}=0}=7.01$ (graphically); βd_{2} (average) $=0.381_{8}$.
The authors thank the Chemical Society and the Commonwealth Science Fund for grants which have assisted this work.

University of Sydney, N.S.W., Australia.
[Received, March 8th, 1950.]

